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ABSTRACT 

LCLU monitoring is a trending topic of research now. Sub pixel mapping (SPM) can be used to 

extract the LCLU information of by dividing the pixels into sub pixels. Application of SPM technique for 

Time series images (TSIs) is a very rare condition or topic of research. This paper includes research 

work conducted on TSIs using the SPM technique for LCLU monitoring. In this work both the spatial and 

temporal dependencies are considered simultaneously. The spatial dependencies are considered by 

correlation of the sub pixels within each image whereas the temporal dependencies consider a 

correlation of sub pixel classes betweenimages. The main aim of the proposed method is to maximize the 

spatiotemporal dependence, which is defined by blending both spatial and temporal dependences. 

Experiments on conducted showed that the proposed approach can provide more accurate sub pixel 

resolution of the TSIs than the existing SPM methods. The SPM results obtained from the TSIs provide an 

excellent opportunity for LCLU dynamic monitoring and change detection at a finer spatial resolution 

than the available coarse spatial resolution TSIs. 
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INTRODUCTION 

LCLU monitoring is a delineable area of the earth's terrestrial surface, including all 

attributes of the biosphere immediately above or below the surface. Which  includes surface 

climate, soil and terrain forms, surface hydrology including shallow lakes, rivers, marshes and 

swamps, surface sedimentary layers and associated groundwater and geo hydrological reserves, 

plant and animal populations, human settlement pattern and physical results of past and present 

human activity (terracing, water storage or drainage structures, roads, buildings, etc.) 

Land cover (LC) is a Physical and biological cover of the earth's surface including 

artificial surfaces, agricultural areas, forests, natural areas, wetlands, water bodies. Land use 

(LU) is a Territory characterized according to its current and future planned functional 

dimension or socio–economic purpose (e.g. residential, industrial, commercial, agricultural, 

forestry, recreational). 
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Functional definition of LU describes the land in terms of its socio-economic purpose 

(e.g. agricultural, residential, forestry). in this LU can be inferred from LC 

Sequential definition of LU describes the land based on series of operations on land, 

carried out by humans, with the intention to obtain products and/or benefits through using land 

resources. Here LU cannot be inferred from LC. Other information sources are needed. 

 The Users of LCLU information are the Agencies responsible for 

policy implementation and enforcement, Information providers, Industries and businesses that 

are often the target of policy, NGOs and the public, Research bodies, Policy makers (e.g. DG 

from EC, EEA, National, Member States Agencies). 

The main sources of the images for LCLU monitoring are Landsat and MODIS sensors as they 

are freely available, regularly revisits the capabilities, and  due to their wider swath. 

SUB PIXEL MAPPING OR SUPER RESOLUTION MAPPING (SPM) 

SPM, which is also termed super resolution mapping in remote sensing, is a technique 

that can be achieved through the post processing of spectral unmixing. In SPM each pixel is 

divided into number of subpixels. The number of sub pixels in each class is determined by 

spectral unmixing output and by using the zoom factor. SPM assumes that the land cover is 

spatially dependent both within and between pixels (i.e., compared with more distant pixels, 

neighboring pixels are more likely to be of the same class). Base on this assumption subpixel 

classes are predicted. SPM transforms pixel-level un mixing outputs (i.e., coarse LCLU 

proportions) into a finer spatial resolution hard classification, and this allows a hard classification 

technique to be applied at the sub pixel level. 

The advantages of SPM are as fallows. 

 In SPM both spatial and temporal dependencies are fused together. Therefore the information 

capitulation occurs more deeply in TSIs. 

 Accuracy is more in SPMs 

 Weights are calculated without any human intervention. Thus it is completely automatic. 

 The approach offers an excellent opportunity for LCLU dynamic monitoring and change 

detection at a finer spatial resolution than the available coarse TSIs 

 The remaining sections of the paper involves the related work, proposed method, Experimental 

result conclusion and the references. 

RELATED WORK 

Many experiments and research works have been carried out from last few decades on 

LCLU monitoring of the TSIs. Few methods available for LCLU monitoring of the TSIs are 

Bayesian classification [1], compound classification [2-3], spatiotemporal Markov random 
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fields[4-6], domain adaption[7] , and spatiotemporal segmentation [8].  these techniques are 

based on pixel-level LCLU classification of all the images in the time series and explicit use of 

the temporal correlation between images in the form of, for example, transition probabilities or 

joint probabilities between LCLU classes. 

 

The existing SPM algorithms are genetic algorithms[9], particle swarm optimization [10], 

pixel swapping algorithm (PSA)[11-12], Hopfield neural network [13-14], maximum a 

posteriori method[15], subpixel/pixel spatial attraction model (SPSAM)[16-17], 

backpropagation neural network[18-19], Kriging [20], indicatorCokriging [21-22], Markov 

random field[23-24], contouring method[25] , and the newly developed soft-thenhard SPM 

framework. In all of these algorithms, spatial dependence is described in different ways. 

Traditional hard classification approaches cannot be applied because of sub-pixel heterogeneity. 

 

In this paper, a new spatiotemporal SPM algorithm is proposed for multi temporal LCLU 

mapping from coarse TSIs. The spatiotemporal dependence at the sub pixel scale is defined by 

fusing the spatial dependence with the temporal dependence. 

 

For large areas, it is difficult to assess the spatial distribution and inter-annual variation of 

crop acreages through field surveys. Time series of coarse resolution imagery offer the advantage 

of global coverage at low costs, and are therefore suitable for large-scale crop type mapping. Due 

to their coarse spatial resolution, however, the problem of mixed pixels has to be addressed. In 

this work author evaluate neural networks as a modeling tool for sub-pixel crop acreage 

estimation. The proposed methodology is based on the assumption that different cover type 

proportions within coarse pixels prompt changes in time profiles of remotely sensed vegetation 

indices like the Normalized Difference Vegetation Index (NDVI). Neural networks can learn the 

relation between temporal NDVI signatures and the sought crop acreage information. This 

learning step permits a non-linear unmixing of the temporal information provided by coarse 

resolution satellite sensors. For assessing the feasibility and accuracy of the approach, a study 

region in central Italy (Tuscany) was selected [1]. 

 

Due to rapid changes on the Earth’s surface, it is important to perform land cover change 

detection (CD) at a fine spatial and fine temporal resolution. However, remote sensing images 

with both fine spatial and temporal resolutions are commonly not available or, where available, 

may be expensive to obtain. This paper attempts to achieve fine spatial and temporal resolution 

land cover CD with a new computer technology based on sub pixel mapping (SPM): The fine 

spatial resolution land cover maps (FRMs) are first predicted through SPM of the coarse spatial 

but fine temporal resolution images, and then, subpixel resolution CD is performed by 

comparison of class labels in the SPM results. For the first time, five fast SPM algorithms, 

including bilinear interpolation, bicubic interpolation, subpixel/pixel spatial attraction model, 
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Kriging, and radial basis function interpolation methods, are proposed for subpixel resolution 

CD. The auxiliary information from the known FRM on one date is incorporated in SPM of 

coarse images on other dates to increase the CD accuracy. Based on the five fast SPM algorithms 

and the availability of the FRM, subpixels for each class are predicted by comparison of the 

estimated soft class values at the target fine spatial resolution and borrowing information from 

the FRM. Experiments demonstrate the feasibility of the five SPM algorithms using FRM in 

subpixel resolution CD. They are fast methods to achieve subpixel resolution CD [2]. 

Slow-moving landslides are widespread in many landscapes with significant impacts on 

the topographic relief, sediment transfer and human settlements. Their area-wide mapping and 

monitoring in mountainous terrain, however, is still challenging. The growing archives of optical 

remote sensing images offer great potential for the operational detection and monitoring of 

surface motion in such areas. This study proposes a multiple pair wise image correlation (MPIC) 

technique to obtain a series of redundant horizontal displacement fields, and different multi-

temporal indicators for a more accurate detection and quantification of surface displacement. The 

technique is developed and tested on a series of monoscopic and stereoscopic Pléiades satellite 

images at a test site in the South French Alps. Empirical tests confirm that MPIC signifi- cantly 

increased detection accuracy (F−measure = 0.85) and that the measurement error can be reduced 

by averaging velocities from all pair combinations covering a given time-step (i.e. when stereo-

pairs are available for at least one date). The derived inventory and displacement fields of 169 

slow-moving landslides show a positive relationship between the landslide size and velocities, as 

well as a seasonal acceleration of the largest landslides in response to an increase in effective 

precipitation. The processing technique can be adapted to better exploit increasingly available 

time-series from a variety of optical satellites for the detection and monitoring of landslide 

displacement [3]. 

The aim of this work is to present a spatio-temporal pixel-swapping algorithm (STPSA), 

based on conventional pixel swapping algorithms (PSAs), in which both spatial and temporal 

contextual information from previous land cover maps or observed samples are well integrated 

and utilized to improve sub pixel mapping accuracy. Unlike conventional pixel-swapping 

algorithms, STPSA is capable of utilizing prior information, which was previously ignored, to 

predict the attractiveness based on pairs of sub pixels. This algorithm involves three main steps 

and operates in an iterative manner: 1) it predicts the maximum and minimum attractiveness of 

each pair of pixels; 2) ranks the swapping scores based on the attractiveness of all the pairs; and 

3) swaps the locations of the pair of pixels with a maximum score to increase the objective 

function. Experiments with actual satellite images have demonstrated that the proposed 

algorithm performs better than other algorithms. In comparison, the proposed STPSA’s better 

performance is due to the fact that prior information used in other algorithms is restricted to a 

percentage level rather than the real sub pixel level [ 4]. 
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Estimation of evapotranspiration (ET) from remote sensing based energy balance models 

have evolved as a promising tool in the field of water resources management. Performance of 

energy balance models and reliability of ET estimates is decided by the availability of remote 

sensing data at high spatial and temporal resolutions. The huge tradeoff in the spatial and 

temporal resolution of satellite images act as major constraints in deriving ET at fine spatial and 

temporal resolution using remote sensing based energy balance models. Hence a need exists to 

derive finer resolution data from the available coarse resolution imagery, which could be applied 

to deliver ET estimates at scales to the range of individual fields. The current study work 

employed a spatio-temporal disaggregation method to derive fine spatial resolution (60m) 

images of NDVI by integrating the information in terms of crop phenology derived from time 

series of MODIS NDVI composites with fine resolution NDVI derived from a single AWiFS 

data acquired during the season. The disaggregated images of NDVI at fine resolution were used 

to disaggregate MODIS LST data at 960 m resolution to the scale of Landsat LST data at 60 m 

resolution. The robustness of the algorithm was verified by comparison of the disaggregated 

NDVI and LST with concurrent NDVI and LST images derived from Landsat ETM+. The 

results showed that disaggregated NDVI and LST images compared well with the concurrent 

NDVI and LST derived from ETM+ at fine resolution with a high Nash Sutcliffe Efficiency and 

low Root Mean Square Error. The proposed disaggregation method proves promising in 

generating time series of ET at fine resolution for effective water management [5]. 

PROPOSED METHOD 

The complete design flow involves the fallowing steps like Input, Initialization, update 

and output.  

Figure 1: Flow diagram of the Spatiotemporal SPM algorithm 
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Step1: Input is a set of proportion image for all TSIs. 

Step2: Initialization involves the allocation of sub pixels for each class in each image. For this 

process simple SPM techniques are used. In this work SPSAM is used for initialization. After 

initialization the subpixel location may vary but there won’t be any variation in the number of 

sub pixel for each class of the image. 

Step3: The update process is based on the cascade approach. Following are the steps involved in 

the update 

1) SPM is conducted for each coarse image, in units of coarse pixels. 

2) Let the current coarse image be It, within a particular coarse pixel P
t
j, the following steps 

are implemented. 

a) For all sub pixels, the sum of spatiotemporal dependence is calculated  

The sum of spatial dependence for all S
2 

subpixels is calculated by using DS
SS

(i, j; t) in equation 

(1) or D
SP

S(i, j; t) in equation (2).  

 

 

    - (1) 

 

 
    -(2)  

- (2) 

 

Then, with the temporal neighbors in images from the FSRM to It−1 (if the time of Itis 

after the FSRM) or It+1 (if the time of Itis before the FSRM), the sum of temporal dependence for 

all S
2
 subpixels is calculated by using DT (i, j; t) in equation (3).  

 

 
- (3) 

- (3) 

For all S
2
 subpixels, the sum of spatiotemporal dependence is calculated according to equation 

(4). 
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         - (4) 

b) A pair of sub pixels with different class labels is selected randomly, and their spatial locations 

are swapped. The sum of spatiotemporal dependence for all sub pixels in the new configuration 

is calculated again. If the overall spatiotemporal dependence increases, the swap is accepted; 

otherwise, the swap is allowed with a certain probability determined according to the current 

“temperature.” Such a probability decreases with the decreasing temperature at each iteration. 

 

3) The steps a and b are repeated for each coarse pixel.  

4) The swap process is repeated until the predefined number of iterations is reached for the 

current image It. 

5) For each coarse image in the TSIs, steps 1–4 are implemented 

ESTIMATION OF WEIGHT 

The FSRM is used to obtain the weights of each pixel. Figure 2 shows the flowchart of 

the weight estimation method. In this example, the FSRM is assumed to be I0, and SPM goes 

from I1 to Itdirectly. 

The detailed processes are described as follows. 

Step 1: A weight pool is set for λ1(x + n): {λ1,1(x + n), λ1,2(x + n), . . . , λ1,L(x + n)}. In this 

paper, λ1(x + n) was varied from 0.1 to 0.9 with a step of 0.1, that is, the pool set is {0.1, 0.2, . . . 

,0.9}. 

Step 2: A weight λ1,l(x + n) (l ∈  {1, 2, . . ., L}) is selected from the pool, and the following 

procedures are conducted. 

1) Regarding the FSRM as a starting point, spatiotemporal SPM of coarse images Ix+1, Ix+2, . . . , 

Ix+nis performed with a zoom factor of S. In this process, the temporal information from the 

FSRM is propagated from Ix+1 to Ix+n. 

2) The FSRM is degraded with the factor of S to simulate the coarse images at that time. 

3) SPM of the simulated coarse images for FSRM using the spatiotemporal model, in which the 

SPM results of Ix+1, Ix+2, . . .  ,Ix+nare considered as temporally neighboring images. 

4) The original FSRM is used for supervised assessment of the corresponding SPM result, and an 

accuracy value is recorded for the selected parameter. 

Step 3: Step 2 is implemented for all weights in the pool, and L accuracy values are obtained as a 

result. 

Step 4: The weight leading to the greatest accuracy is determined as the optimal one. 

Step 5: Steps 1–4 are performed for the next coarse image Ix+n+1 to estimate the corresponding 

weight λ1(x + n + 1). The whole procedure is terminated after all coarse images are visited. 
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EXPERIMENTAL RESULTS: 

The experiment was conducted on two different data sets to examine the proposed SPM 

algorithm. The data set images were captured at two different timing. Figures 3 and 4 represent 

the images captured at two different times respectively. The figure 5 shows the LCLU classified 

map. Figure 6 represent the synthesized images of the data set for three classes’ water, urban and 

vegetation respectively. The figure 7 shows the block based analysis of both image1 and 

image2.Figure 8 shows the cell based analysis of the image1 and image2 which are captured at 

different time period.  

 

 

Figure 2: Flow chart of the weight estimation using the FSRM 
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Figure 3: the images captured at time period 1 

 

 

Figure 4: the images captured at time period 2 
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Figure5:The LCLU classified map of the image 

 

 

Figure 6: The synthesized images of the data set for three classes’ water, urban and 

vegetation respectively 
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Figure 7: The block based analysis of both image1 and image2 

 

 

Figure 8: The Cell based analysis of both image1 and image2 
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CONCLUSION 

The main objective of the proposed work is to increase the spatiotemporal dependencies in 

LCLU within each image and maximize the temporal dependencies in LCLU between images. 

The proposed SPM approach incorporates information from the FSRM in the TSIs. The various 

advantages of the proposed SPM approach are as follows: the spatial and temporal dependencies 

are considered simultaneously, readily incorporates multi resolution multi source data of 

TSIs,SPM is completely a automatic process and there is no human intervention in calculating 

the weights. 
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